\\ \section*{\title{
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz\\ \section*{\title{
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
}} Downconversion Mixer with LO Buffer/Switch
}}

General Description

The MAX9995 dual, high-linearity, downconversion mixer provides 6.1 dB gain, +25.6 dBm IIP3, and 9.8 dB NF for UMTS/WCDMA, DCS, and PCS base-station applications. The MAX9995 is ideal for low-side LO injection. (For a mixer variant optimized for high-side LO injection, contact the factory.)
This device integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, two doublebalanced mixers, and a pair of differential IF output amplifiers. The MAX9995 requires a typical LO drive of OdBm and supply current is guaranteed to be below 380 mA .
These devices are available in a compact 36-pin thin QFN package ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$) with an exposed paddle. Electrical performance is guaranteed over the extended temperature range, from $\mathrm{T} \mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Applications

UMTS/WCDMA and cdma2000® 3G Base Stations

DCS1800 and EDGE Base Stations
PCS1900 and EDGE Base Stations

PHS/PAS Base Stations
Fixed Broadband
Wireless Access
Wireless Local Loop
Private Mobile Radio
Military Systems

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9995ETX	$\mathrm{T}^{* *}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP*
MAX9995ETX-T	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP*
MAX9995ETX+D	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP* lead free, bulk
MAX9995ETX+TD	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN-EP* lead free, T/R

${ }^{*} E P=$ Exposed pad.
${ }^{* *} T_{C}=$ Case temperature
cdma2000 is a registered trademark of Telecommunications Industry Association

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

Vcc..
…...-0.3V to +5.5 V
LO1, LO2 to GND ... $\pm 0.3 \mathrm{~V}$
IFM_, IFD_, IFM_SET, IFD_SET, LOSEL,
LO_ADJ_M, LO_ADJ_D to GND............-0.3V to (VCC +0.3 V) RFMAIN, RFDIV, and LO_ Input Power20dBm RFMAIN, RFDIV Current (RF is DC shorted to GND through balun) \qquad

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 36 -Lead Thin QFN (derate $26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
\qquad
${\text { OJA .. } 38^{\circ} \mathrm{C} / \mathrm{W}}^{\text {. }}$
${\text { OJC .. }+7.4^{\circ} \mathrm{C} / \mathrm{W} ~}_{\text {W }}$
Operating Temperature Range (Note A) T $\mathrm{C}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature Range.......................... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Note A: TC is the temperature on the exposed paddle of the package.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, no input RF or LO signals applied, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at V_{CC} $=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{CC}		4.75	5	5.25	V
Supply Current	IcC	Total supply current		332	380	mA
		$\mathrm{V}_{\text {CC }}($ pin 16)		82	90	
		VCC (pin 30)		97	110	
		IFM+/IFM- (total of both)		70	90	
		IFD+/IFD- (total of both)		70	90	
LOSEL Input High Voltage	V_{IH}		2			V
LOSEL Input Low Voltage	$\mathrm{V}_{\text {IL }}$				0.8	V
LOSEL Input Current	$I_{\text {IL }}$ and $\mathrm{IIH}^{\text {H }}$		-10		+10	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, PLO $=-3 \mathrm{dBm}$ to +3 dBm , $\mathrm{fRF}=$ 1700 MHz to 2200 MHz , fLO $=1400 \mathrm{MHz}$ to $2000 \mathrm{MHz}, \mathrm{f}_{\mathrm{fIF}}=200 \mathrm{MHz}$, with fRF $>\mathrm{f}_{\mathrm{LO}}, \mathrm{TC}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ $5.0 \mathrm{~V}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{fRF}=1900 \mathrm{MHz}, \mathrm{fLO}=1700 \mathrm{MHz}, \mathrm{fIF}=200 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency	f_{RF}	(Note 7)	1700		2200	MHz
LO Frequency	flo	(Note 7)	1400		2000	MHz
		(Contact factory) (Note 7)	1900		2400	MHz
IF Frequency	fiF	Meeting RF and LO frequency ranges; IF matching components affect the IF frequency range (Note 7)	40		350	MHz
Conversion Gain	Gc	$\mathrm{f}_{\mathrm{RF}}=1710 \mathrm{MHz}$ to 1875 MHz		6		dB
		$\mathrm{fRF}=1850 \mathrm{MHz}$ to 1910 MHz		6.2		
		$\mathrm{fRF}=2110 \mathrm{MHz}$ to 2170 MHz		6.1		

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to 5.25 V , RF and LO ports are driven from 50Ω sources, $\mathrm{PLO}=-3 \mathrm{dBm}$ to +3 dBm , $\mathrm{f}_{\mathrm{RF}}=$ 1700 MHz to $2200 \mathrm{MHz}, f_{L O}=1400 \mathrm{MHz}$ to $2000 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, with $f_{R F}>\mathrm{f}_{\mathrm{LO}}, \mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=$ 5.0V, $\mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=1700 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$, and $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Gain Variation from Nominal		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \\ & \mathrm{TC}=+25^{\circ} \mathrm{C}, \\ & \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \\ & \mathrm{P}_{\mathrm{RF}}=-10 \mathrm{dBm} \\ & \text { (Note 3) } \end{aligned}$	$\mathrm{f}_{\mathrm{RF}}=1710 \mathrm{MHz}$ to 1875 MHz			± 0.5	± 1	dB
			$\mathrm{fRF}^{\text {a }}=1850 \mathrm{MHz}$ to 1910 MHz			± 0.5	± 1	
			$\mathrm{f}_{\mathrm{RF}}=2110 \mathrm{MHz}$ to 2170 MHz			± 0.5	± 1	
Gain Variation with Temperature					± 0.75			dB
Noise Figure	NF	No blockers present	$\mathrm{f}_{\mathrm{RF}}=1710 \mathrm{MHz}$ to 1875 MHz			9.7		dB
			$\mathrm{fRF}^{\text {a }}$ = 1850 MHz to 1910 MHz			9.8		
			$\mathrm{f}_{\mathrm{RF}}=2110 \mathrm{MHz}$ to 2170 MHz		9.9			
Noise Figure (with Blocker)		8dBm blocker tone applied to RF port at $2000 \mathrm{MHz}, \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{fLO}=1710 \mathrm{MHz}$, PLO $=-3 \mathrm{dBm}$			22			dB
Input 1dB Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$	(Note 3)			9.5	12.6		dBm
Input Third-Order Intercept Point	IIP3	(Notes 3, 4)			23	25.6		dBm
2RF-2LO Spur Rejection	2×2	$\begin{aligned} & \mathrm{fRF}=1900 \mathrm{MHz}, \\ & \mathrm{fLO}=1700 \mathrm{MHz}, \\ & \text { fSPUR }=1800 \mathrm{MHz} \text { (} \text { Note 3) } \\ & \hline \end{aligned}$		PRF $=-10 \mathrm{dBm}$		66		dBc
				PRF $=-5 \mathrm{dBm}$		61		
3RF-3LO Spur Rejection	3×3	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \\ & \mathrm{f}_{\mathrm{LO}}=1700 \mathrm{MHz}, \\ & \text { fSPUR }=1766.7 \mathrm{MHz}(\text { Note } 3) \end{aligned}$		$\mathrm{P}_{\mathrm{RF}}=-10 \mathrm{dBm}$	70	88		dBc
				$P_{\text {RF }}=-5 \mathrm{dBm}$	60	78		
Maximum LO Leakage at RF Port		$\mathrm{fLO}=1400 \mathrm{MHz}$ to 2000 MHz				-29		dBm
Maximum 2LO Leakage at RF Port		$\mathrm{fLO}=1400 \mathrm{MHz}$ to 2000MHz				-17		dBm
Maximum LO Leakage at IF Port		$\mathrm{fLO}^{\text {a }} 1400 \mathrm{MHz}$ to 2000 MHz				-25		dBm
Minimum RF to IF Isolation		$\mathrm{ffF}=1700 \mathrm{MHz}$ to $2200 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$				37		dB
LO1-LO2 Isolation		PLO1 $=0 \mathrm{dBm}$, PLO2 $=0 \mathrm{dBm}$ (Note 5)			40	50.5		dB
Minimum Channel-to-Channel Isolation		PRF $=-10 \mathrm{dBm}$, RFMAIN (RFDIV) power measured at IFDIV (IFMAIN), relative to IFMAIN (IFDIV), all unused parts terminated at 50Ω			40	44		dB
LO Switching Time		50% of LOSEL to IF settled to within 2°				50		ns
RF Return Loss						14		dB
LO Return Loss		LO port selected				18		dB
		LO port unselected				21		
IF Return Loss		LO driven at 0	, RF termin	ed into 50Ω		21		dB

Note 1: Guaranteed by design and characterization.
Note 2: All limits reflect losses of external components. Output measurements taken at IF outputs of Typical Application Circuit.
Note 3: Production tested.
Note 4: Two tones 3 MHz spacing, -5 dBm per tone at RF port.
Note 5: Measured at IF port at IF frequency. flO1 and flO2 are offset by 1 MHz .
Note 6: IF return loss can be optimized by external matching components.
Note 7: Operation outside this frequency band is possible but has not been characterized. See the Typical Operating Characteristics.

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

(Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

2RF-2LO vs. FUNDAMENTAL FREQUENCY

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, VCC $=5.0 \mathrm{~V}, \mathrm{PRF}_{\mathrm{R}}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LO}$ is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

INPUT P1dB vs. RF FREQUENCY

3RF - 3LO vs. FUNDAMENTAL FREQUENCY

INPUT $P_{1 d B}$ vs. RF FREQUENCY

0 SWITCH ISOLATION vs. LO FREQUENCY

LO SWITCH ISOLATION vs. LO FREQUENCY

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P} \mathrm{RF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LO}$ is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQuENCY

CHANNEL ISOLATION vs. RF FREQUENCY

LO LEAKAGE AT IF PORT vs. LO FREQUENCY

LO LEAKAGE AT RF PORT vs. LO FREQUENCY

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{PRF}=-5 \mathrm{dBm}, \mathrm{PLO}=0 \mathrm{dBm}, \mathrm{LO}$ is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

RF RETURN LOSS vs. RF FREQUENCY

IF RETURN LOSS vs. IF FREQUENCY

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(Typical Application Circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}_{\mathrm{LO}}=0 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \mathrm{IF}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$.)

Pin Description

PIN	NAME	FUNCTION
1	RFMAIN	Main Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
2	TAPMAIN	Main Channel Balun Center Tap. Connect a 0.033μ F capacitor from this pin to the board ground.
$3,5,7,12,20,22$, $24,25,26,34$	GND	Ground
$4,6,10,16,21,30$, 36	VCC	Power Supply. Connect bypass capacitors as close to the pin as possible (see the Typical Application Circuit).
8	TAPDIV	Diversity Channel Balun Center Tap. Connect a 0.033 μ F capacitor from this pin to the ground.
9	RFDIV	Diversity Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor.
11	IFD_SET	IF Diversity Amplifier Bias Control. Connect a $1.2 \mathrm{k} \Omega$ resistor from this pin to ground to set the bias current for the diversity IF amplifier.
13,14	IFD+, IFD-	Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
17	IND_EXTD	Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.
18,28	N.C.	No Connection. Not internally connected.
19	LO1	Local Oscillator 1 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
23	LOSEL	Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2. bias current for the difier Bias Control. Connect a 392 Ω resistor from this pin to ground to set the

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Pin Description (continued)

PIN	NAME	DESCRIPTION
27	LO2	Local Oscillator 2 Input. This input is internally matched to 50Ω. Requires an input DC-blocking capacitor.
29	LO_ADJ_M	LO Main Amplifier Bias Control. Connect a 392Ω resistor from this pin to ground to set the bias current for the main LO amplifier.
31	IND_EXTM	Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.
32,33	IFM-, IFM +	Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit).
35	IFM_SET	IF Main Amplifier Bias Control. Connect a 1.2k Ω resistor from this pin to ground to set the bias current for the main IF amplifier.
Exposed Paddle	GND	Exposed Ground Plane. This paddle affects RF performance and provides heat dissipation. The paddle must be connected to ground.

Detailed Description

The MAX9995 dual, high-linearity, downconversion mixer provides 6.1 dB gain and +25.6 dBm IIP3, with a 9.8 dB noise figure. Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. A single-pole, double-throw (SPDT) LO switch provides 50 ns switching time between LO inputs, with 50dB LO-to-LO isolation. Furthermore, the

Table 1. Component Values

COMPONENT	VALUE	DESCRIPTION
C1, C8	$4 p F$	Microwave capacitors (0402)
C2, C7	10 pF	Microwave capacitors (0402)
C3, C6	$0.033 \mu \mathrm{~F}$	Microwave capacitors (0603)
C4, C5, C14, C16	22 pF	Microwave capacitors (0402)
C9, C13, C15, C17, C18	$0.01 \mu \mathrm{~F}$	Microwave capacitors (0402)
C10, C11, C12, C19, C20, C21	150 pF	Microwave capacitors (0603)
L1, L2, L4, L5	330 nH	Wire-wound high-Q inductors (0805)
L3, L6	10 nH	Wire-wound high-Q inductors (0603)
R1, R4	$1.21 \mathrm{k} \Omega$	$\pm 1 \%$ resistors (0402)
R2, R5	392Ω	$\pm 1 \%$ resistors (0402)
R3, R6	10Ω	$\pm 1 \%$ resistors (1206)
T1, T2	$4: 1$ $(200: 50)$	IF baluns

integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9995's inputs to -3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF-2LO performance.
Specifications are guaranteed over broad frequency ranges to allow for use in UMTS/WCDMA and 2G/2.5G/3G DCS1800, PCS1900, and cdma2000 base stations. The MAX9995 is specified to operate over an RF input range of 1700 MHz to 2200 MHz , an LO range of 1400 MHz to 2000 MHz , and an IF range of 40 MHz to 350 MHz . Operation beyond this is possible; however, performance is not characterized. This device can operate in high-side LO injection applications with an extended LO range, but performance degrades as flo continues to increase. For a device with better highside performance, contact the factory. This device is available in a compact $6 \mathrm{~mm} \times 6 \mathrm{~mm}, 36$-pin thin QFN package with an exposed paddle.

RF Input and Balun

The MAX9995's two RF inputs (RFMAIN and RFDIV) are internally matched to 50Ω, requiring no external matching components. DC-blocking capacitors are required as the inputs are internally DC shorted to ground through the on-chip baluns. Input return loss is typically 14 dB over the entire RF frequency range of 1700 MHz to 2200 MHz .

LO Input, Switch, Buffer, and Balun

The mixers can be used for either high-side or low-side injection applications with an LO frequency range of 1400 MHz to 2000 MHz . For a device with an LO frequency range of 1900 MHz to 2400 MHz , contact the factory. As an added feature, the MAX9995 includes an

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

 Typical Application Circuit

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

internal LO SPDT switch that can be used for frequen-cy-hopping applications. The switch selects one of the two single-ended LO ports, allowing the external oscillator to settle on a particular frequency before it is switched in. LO switching time is typically less than 50 ns , which is more than adequate for virtually all GSM applications. If frequency hopping is not employed, set the switch to either of the LO inputs. The switch is controlled by a digital input (LOSEL): logic high selects LO1, and logic low selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only a 22 pF DC-blocking capacitor.
A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3 dBm to +3 dBm . The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip.

High Linearity Mixers

The core of the MAX9995 is a pair of double-balanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and NF performance is typically $+25.6 \mathrm{dBm}, 66 \mathrm{dBc}$, and 9.8 dB , respectively.

Differential IF Output Amplifiers

 The MAX9995 mixers have an IF frequency range of 40 MHz to 350 MHz . The differential, open-collector IF output ports require external pullup inductors to V_{C}. Note that these differential outputs are ideal for providing enhanced 2RF-2LO rejection performance. Singleended IF applications require a $4: 1$ balun to transform the 200Ω differential output impedance to a 50Ω singleended output. After the balun, VSWR is typically 1.5:1.
Applications Information

Input and Output Matching

The RF and LO inputs are internally matched to 50Ω. No matching components are required. Return loss at each RF port is typically 14 dB over the entire input range (1700 MHz to 2200 MHz), and return loss at the LO ports is typically $18 \mathrm{~dB}(1400 \mathrm{MHz}$ to 2000 MHz). RF and LO inputs require only DC-blocking capacitors for interfacing.

The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit).

Bias Resistors
Bias currents for the LO buffer and the IF amplifier are optimized by fine tuning the resistors R1, R2, R4, and R5. If reduced current is required at the expense of performance, contact factory. If the $\pm 1 \%$ bias resistor values are not readily available, substitute standard $\pm 5 \%$ values.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad MUST be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/ther-mal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board. The MAX9995 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing

Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each Vcc pin with a capacitor as close to the pin as possible (Typical Application Circuit).

Exposed Pad RF/Thermal Considerations

 The exposed paddle (EP) of the MAX9995's 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PC board on which the MAX9995 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.
Chip Information

TRANSISTOR COUNT: 1414
PROCESS: SiGe BiCMOS

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Dual, SiGe, High-Linearity, 1700 MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS										EXPOSED PAD VARIATIONS							$\begin{gathered} \text { DOWN } \\ \text { BONDS } \\ \text { AЦOWED } \end{gathered}$	
PKG.	36L 6x6			40L 6x6			48L 6x6			PKG. CODES	D2			E2				
SYMBOL	MNN.	NOM.	MAX.	MN.	NOM.	Mux.	M M N.	NOM.	MAX.		MIN.	NOM.	MAX.	MN.	NOM.	MAX.		
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T3666-1	3.60	3.70	3.80	3.60	3.70	3.80	NO	
AI	0	0.02	0.05	0	0.02	0.05	0	-	0.05	T3666-2	3.60	3.70	3.80	3.60	3.70	3.80	YES	
A2		. 20 REF			20 REF			20 REF		T3666-3	3.60	3.70	3.80	3.60	3.70	3.80	NO	
b	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25	T4066-1	4.00	4.10	4.20	4.00	4.10	4.20	NO	
B	5.90	B.00	6.10	5.90	6.00	6.10	5.90	6.00	6.10	T4066-2	4.00	4.10	4.20	4.00	4.10	4.20	YES	
E	5.90	6.00	6.10	5.90	6.00	6.10	5.90	6.00	6.10	T4066-3	4.00	4.10	4.20	4.00	4.10	4.20	YES	
e		50 BSC			50 BSC			40 BSC		T4066-4	4.00	4.10	4.20	4.00	4.10	4.20	NO	
k	0.25	-	-	0.25	-	-	0.25	0.35	0.45	T4066-5	4.00	4.10	4.20	4.00	4.10	4.20	NO	
L	0.45	0.55	D. 65	0.30	0.40	0.50	0.40	0.50	0.60	T4866-1	4.20	4.30	4.40	4.20	4.30	4.40	YES	
LI	-	-	-	-	-	-	0.30	0.40	0.50									
N		36			40			48										
ND		9			10			12										
NE		9			10			12										
JEDEC		UWJD-1			WhD-2			-										
NOTES:																		
1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.																		
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.																		
3. N IS THE TOTAL NUMBER OF TERMINALS.																		
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE																		
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.																		
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.																		
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.																		
10. WARPAGE SHALL NOT EXCEED 0.10 mm .											Thim PACKAGE OUTLINE							
											Anmome			2	$1-014$		E	2/2

